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Abstract: Regional earthquake risk analyses employ fragility models to estimate shaking-induced damage to 

the built environment. Empirical fragility models are estimated from damage data gathered after past 

earthquakes and present a valuable resource to calibrate and validate models derived from physics-based 

computer simulations. Yet, empirical fragility modelling is challenging because it requires knowledge of the 

ground motion intensity the buildings were subjected to. The latter, however, is only known at locations of 

seismic network stations while its uncertainty increases for locations further away. Thus, if a group of damaged 

buildings is observed, we do not know, a-priori, whether they were damaged because they were particularly 

vulnerable or because the ground shaking was particularly strong or because of both. We refer to this as the 

chicken and egg problem in empirical fragility modelling. In this work, we present a Bayesian approach to 

quantify the joint posterior distribution of the fragility model parameters and the ground motion intensity. Using 

a simulated damage data set, we compare the Bayesian approach to the traditionally used approach that relies 

on fixed ground motion intensity estimates.  

1 Introduction 

Regional risk assessments often rely on probabilistic relations between ground shaking intensity and physical 

damage to the exposed structures. A fragility function plots the probability of reaching or exceeding a certain 

damage limit state for increasing ground motion intensity measure (IM) levels. Empirical fragility modeling aims 

to estimate such functions from damage survey data collected after past earthquakes. Besides the need for 

high-quality and high-coverage damage surveys, this empirical approach also requires information on the IM 

values at the survey locations (Rossetto and Ioannou, 2018). Unless the surveyed structures were equipped 

with seismic recording stations, these IM values are unknown. Yet, the observed damage is caused by both: 

the structures’ fragilities and the IM values they were subjected to. This leads to the chicken and egg problem 

in empirical fragility modelling: How can one estimate the structures’ fragilities if the actual IM values are 

unknown?  

One approach to tackle this causality dilemma estimates fragility function parameters using fixed, deterministic, 

IM values. The fixed values represent best-estimates that are typically chosen as the median of the IM 

distribution conditional on available data from seismic network stations (e.g., from a shake map). The fixed IM 

approach served as the basis for most available empirical fragility functions (e.g., Rosti et al., 2021). In 

simulated case studies, Ioannou et al. (2015) showed that this approach has difficulties in recovering the “true” 
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data-generating fragility functions. This may be explained by the fact that this approach does not account for 

potential deviations of the actual IM values from the fixed, best-estimate, values. 

To address this shortcoming, the authors recently proposed a novel estimation approach that explicitly 

accounts for IM uncertainty and uses Bayesian inference to estimate the joint posterior distribution of IM values 

and fragility function parameters (Bodenmann et al., 2023). This study illustrates the new approach: it starts 

with an overview of fragility function definitions, followed by mathematical descriptions of the traditional, fixed 

IM, estimation approach and the new Bayesian approach. Both methods are then compared using a simulated 

damage data set.   

2 Fragility function parameterization 

This study considers fragility functions for ordered, collectively exhaustive and mutually exclusive damage 

states (e.g., no, slight, moderate, heavy and complete damage), which are numerically encoded as 𝑑𝑠 ∈
{0,1, … , 𝑐}. A fragility function then plots the probability of reaching or exceeding a certain damage state, 𝑑𝑠, 

for increasing levels of ground motion intensity, 𝑖𝑚. The most common functional form for fragility functions is 

based on the log-normal cumulative distribution and is parametrized as 

 
𝑃(𝐷𝑆 ≥ 𝑑𝑠|𝑖𝑚) = Φ (

ln(𝑖𝑚 θ𝑑𝑠⁄ )

β𝑑𝑠

) , (1) 

where Φ(⋅) is the standard normal cumulative distribution function, θ𝑑𝑠 denotes the median IM which causes 

the structure to reach or exceed 𝑑𝑠, and β𝑑𝑠 is the standard deviation of the logarithmic IM, here referred to 

as the dispersion parameter. To avoid a crossing of the fragility functions, we choose an identical dispersion 

parameter β for all damage states. This is a standard assumption taken in fragility modeling for ordered 

damage states (e.g., Nguyen and Lallemant, 2022). For 𝑐 + 1 damage states, we thus have 𝑐  increasing 

parameters θ1 < θ2 < ⋯ < θ𝑐 and one common dispersion parameter β, which are collectively denoted with 

vector 𝛝.  

From the fragility functions, one obtains the probability mass function 𝑃(𝐷𝑆 = 𝑑𝑠|𝑖𝑚) = 𝑝(𝑑𝑠|𝑖𝑚) as 

 

𝑝(𝑑𝑠|𝑖𝑚) = {

1 − 𝑃(𝐷𝑆 ≥ 𝑑𝑠 + 1|𝑖𝑚) , if 𝑑𝑠 = 0

𝑃(𝐷𝑆 ≥ 𝑑𝑠|𝑖𝑚) , if 𝑑𝑠 = 𝑐

𝑃(𝐷𝑆 ≥ 𝑑𝑠|𝑖𝑚) − 𝑃(𝐷𝑆 ≥ 𝑑𝑠 + 1|𝑖𝑚) , otherwise

 (2) 

We denote the fragility model in terms of the probability mass function 𝑝(𝑑𝑠|𝑖𝑚, 𝛝), where we explicitly 

condition on parameters 𝛝. 

In accordance with the current state-of-the-art in empirical fragility modelling, we group buildings with similar 

characteristics in building classes, here denoted as 𝑏𝑐. Then, we estimate fragility function parameters for 

each class 𝑏𝑐 ∈ ℬ𝒞, with ℬ𝒞 being the set of all considered classes. Thus, the total parameter set is 𝛝 =

{𝛝𝑏𝑐|𝑏𝑐 ∈ ℬ𝒞}.  

3 Estimation of empirical seismic fragility functions 

Figure 1 shows the relations between the variables involved in the estimation of 𝛝 by considering a damage 

data set from 𝑛 buildings gathered after an earthquake with rupture characteristics 𝒓𝒖𝒑. The fragility model of 

Eq. (2) relates the observed damage states, 𝒅𝒔 = [𝑑𝑠1, … , 𝑑𝑠𝑛]⊤, to the IM values at the locations of the 

surveyed buildings, 𝒊𝒎 = [𝑖𝑚1, … , 𝑖𝑚𝑛]⊤. Knowing the latter would allow estimating 𝛝 with similar techniques 

used in analytical fragility modeling (e.g., Baker, 2015). In most cases, however, we only know the IM values 

at the locations of seismic stations, here denoted as 𝒊𝒎𝑆 = [𝑖𝑚𝑛+1, … , 𝑖𝑚𝑛+𝑚]⊤ for the case of 𝑚 stations, 

while their counterparts at the survey locations are uncertain. 

To constrain the above-mentioned uncertainty, we follow the approach proposed by Engler et al. (2022) and 

implemented in the most recent version of the United States Geology Survey's shake map system. The 

distribution of 𝒊𝒎 conditional on station data 𝒊𝒎𝑆 and rupture characteristics 𝒓𝒖𝒑 is a multivariate log-normal  

 𝑝(𝒊𝒎|𝒊𝒎𝑆, 𝒓𝒖𝒑) = ℒ𝒩(𝛍, 𝚺) , (3) 
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with the distributional parameters, 𝛍 and 𝚺, being computed via Equations 4 and 5 in Engler et al. (2022) and 

using an empirical ground motion model (GMM) and a spatial correlation model. In the remainder of this study, 

we use the term prior IM distribution for the distribution specified in Eq. (3). 

 

Figure 1.Relations between observed (white) and unobserved (grey) variables involved in the fragility 

function estimation from damage survey data and seismic network station data. 

We next present two methodologies to estimate 𝛝 . The first, traditional, method assumes fixed – or 

deterministic – values for 𝒊𝒎. The second, proposed, method, treats both, 𝛝 and 𝒊𝒎, as uncertain and follows 

a Bayesian approach for inference.   

3.1 Maximum likelihood estimation with fixed IM values 

This estimation method replaces uncertain IM values at the survey sites with fixed, best-estimate, values 

derived from the prior IM distribution 𝑝(𝒊𝒎|𝒊𝒎𝑆, 𝒓𝒖𝒑). For site 𝑖, the best-estimate value corresponds to  𝑖𝑚𝑖 =

𝑒𝑥𝑝[𝛍]𝑖, which is the median IM conditional on station data 𝒊𝒎𝑆. The joint distribution of building damage 

conditional on the IM values at the building locations is assumed to factorize, i.e., 𝑝(𝒅𝒔|𝒊𝒎, 𝛝) =
∏ 𝑝(𝑑𝑠𝑖|𝑖𝑚𝑖 , 𝛝)𝑛

𝑖=1 . The parameters are then estimated by maximizing the log-likelihood  

 
�̂� = argmax

𝝑
∑ ln 𝑝(𝑑𝑠𝑖|𝑖𝑚𝑖, 𝛝)

𝑛

𝑖=1

 , (4) 

such that the obtained parameter estimates maximize the probability of observing the surveyed damage under 

the chosen best-estimate IM values. In the following, we refer to this estimation method as the fixed IM 

approach. 

3.2 Bayesian estimation with uncertain IM values 

To account for ground motion uncertainty, Bodenmann et al. (2023) take a Bayesian approach treating both 

the fragility function parameters, 𝛝, and the IM values at the survey sites, 𝒊𝒎, as realizations of random 

variables. The joint posterior distribution of 𝒊𝒎 and 𝛝 conditional on the triplet of damage survey data, 𝒅𝒔, 

station data, 𝒊𝒎𝑺, and rupture characteristics, 𝒓𝒖𝒑, is expressed as 

 
𝑝(𝛝, 𝒊𝒎 | 𝒅𝒔, 𝒊𝒎𝑆, 𝒓𝒖𝒑) = (∏ 𝑝(𝑑𝑠𝑖|𝑖𝑚𝑖, 𝛝)

𝑛

𝑖=1

) 
𝑝(𝒊𝒎|𝒊𝒎𝑆, 𝒓𝒖𝒑) 𝑝(𝛝)

𝑝(𝒅𝒔|𝒊𝒎𝑆, 𝒓𝒖𝒑)
 (5) 

where the denominator, 𝑝(𝒅𝒔|𝒊𝒎𝑆, 𝒓𝒖𝒑), is the marginal likelihood, i.e., the probability that the prior model 

assigns to the observed damage data conditional on station data and rupture characteristics, 𝑝(𝒊𝒎|𝒊𝒎𝑆, 𝒓𝒖𝒑) 

is the prior IM distribution specified in Eq. (3), 𝑝(𝑑𝑠𝑖|𝑖𝑚𝑖 , 𝛝) follows from the fragility model defined in Eq. 

(2), and 𝑝(𝛝)  is the prior distribution of the fragility function parameters. The latter consists of weakly 

informative priors for each parameter that provide sufficient adaptability to cover building classes with varying 

susceptibility to earthquake damage. Then, Markov Chain Monte Carlo (MCMC) is used to draw samples 

(𝛝, 𝒊𝒎) from the target posterior specified in Eq. (5). The MCMC implementation and the prior distributions of 

the fragility function parameters are described in Bodenmann et al. (2023).  
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Finally, we note that the use of the entire prior IM distribution in Eq. (5) requires access and storage of the 

potentially high-dimensional covariance matrix 𝚺. This makes the Bayesian approach computationally more 

expensive than the traditionally used, fixed IM approach. 

4 Case study 

This case study estimates fragility function parameters using simulated damage data from buildings located in 

the L’Aquila (Italy) region. The damage data was simulated by considering the rupture characteristics and 

station data from the 2009 M6 L’Aquila earthquake as obtained from the engineering strong motion database 

(Luzi et al., 2020). With this analysis, we aim to compare the performance of the two previously described 

estimation procedures in recovering the “true” fragility functions that were used to simulate the damage data 

set. Figure 2 shows the surface projection of the rupture together with the locations of the seismic network 

stations and of the surveyed buildings. 

 

Figure 2. Overview of the L’Aquila case study with the surface projection of the rupture from the 2009 M6 

earthquake, locations of seismic network stations and the considered buildings in the simulated damage 

survey data set. The numbered circles refer to example locations that are analyzed in Section 4.2. 

The considered data set contains data from 12,000 buildings that are categorized into three building classes, 

A, B and C, with decreasing susceptibility to earthquake-induced damage. The damage states consist of six 

categories: no, negligible to slight, moderate, severe, very heavy damage and collapse, numerically encoded 

as 𝑑𝑠 ∈ {0,1,2,3,4,5} . Thus, we estimate six parameters for each building class, leading to a total of 18 

parameters.  

We estimate fragility functions using the elastic, 5%-damped spectral acceleration at 0.3 second, SA(0.3s), as 

the IM of interest. Thus, the vectors 𝒊𝒎 and 𝒊𝒎𝑺 are spectral accelerations at sites of surveyed buildings and 

network stations, respectively. To compute the prior IM distribution, 𝑝(𝒊𝒎|𝒊𝒎𝑆, 𝒓𝒖𝒑), we use the Bindi et al. 

(2011) GMM and the spatial correlation model of Esposito and Iervolino (2012). Figure 3a plots the median 

spectral accelerations conditional on station data 𝒊𝒎𝑆, while Figure 3b illustrates the logarithmic standard 

deviation. The latter shows the reduced IM uncertainty in the vicinity of stations but also highlights how 

this uncertainty increases with distance to the stations. As shown in Figure 2, many buildings of the 

considered survey data set are located far away from the recording stations with corresponding IM values 

being subject to increased uncertainty. 
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Figure 3. The spatial distribution of median IM values (a) and logarithmic standard deviation (b) conditional 

on seismic network recordings from the stations indicated in (a). 

4.1 Maximum likelihood estimation with fixed IM values 

The fixed IM approach uses the median IM values, illustrated in Figure 3a, to perform maximum likelihood 

estimation. For the three considered building classes, Figure 4 compares the estimated fragility functions with 

the “true” data-generating functions. We observe that the estimated functions are flatter than the “true” ones. 

Compared to the “true” functions, the fixed IM approach overestimates damage probabilities for low IM values 

and underestimates probabilities for large IM values. Such behavior results from an overestimation of the 

dispersion parameter β. The “true” β values are 0.59, 0.80, and 0.81 for the three building classes, while the 

estimated values are 1.10, 1.37, and 1.19, respectively. This overestimation indicates that IM uncertainty 

manifests as apparent uncertainty – or dispersion – in the fragility functions.  

 

Figure 4. Fragility functions for three building classes (a to c) estimated with the fixed IM approach and 

compared to the “true” data-generating functions. The five functions correspond to 𝑑𝑠 ∈ {1,2,3,4,5} from the 

top left to the bottom right. 

4.2 Bayesian estimation with uncertain IM values 

The Bayesian approach provides samples from the joint posterior of IM values and fragility parameters. Figure 

5 plots the fragility functions obtained from the mean of the posterior parameter samples (dashed lines) while 
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the shaded areas indicate the 90% credibility interval. The latter is the difference between the 95% and 5% 

quantiles obtained at each IM level for all functions computed from the posterior parameter samples. In this 

case, the estimated mean β values are 0.61, 0.80 and 0.81 for the three building classes, which closely match 

the “true” values (0.59, 0.80, and 0.81). Compared to the fixed IM approach, shown in Figure 4, the Bayesian 

approach performs better in recovering the “true” functions. By explicitly accounting for IM uncertainty, the 

Bayesian approach avoids additional apparent fragility function dispersion observed with the fixed IM 

approach. 

 

Figure 5. Fragility functions for three building classes (a to c) estimated with the Bayesian approach together 

with the “true” data-generating functions. Fragility functions derived using the Bayesian approach are 

illustrated using the mean posterior samples (solid lines) and the 90% credibility interval (shaded area). 

To illustrate the posterior samples of the IM values, Figure 6a shows the spatial distribution of the posterior 

median IM across the study region and Figure 6b illustrates the associated logarithmic standard deviation. 

Compared to the prior IM distribution shown in Figure 3, the conditioning on damage survey data leads to a 

more refined spatial pattern of the median IM and a reduced IM uncertainty in the vicinity of surveyed buildings.  

 

Figure 6. The spatial distribution of median IM values (a) and logarithmic standard deviation (b) estimated 

from the posterior samples obtained from the Bayesian approach using seismic network recordings and 

damage data from the stations and the surveyed buildings indicated in (a). 
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For a further comparison of the prior and posterior IM values, Figure 7 plots the corresponding distributions at 

the locations of three surveyed buildings indicated in Figure 2. The dotted vertical lines show the simulated 

“true”, but unobserved, IM value at these sites, and the labeled points indicate the prior and posterior median 

IM values. Recall that the fixed IM approach uses these prior median values to estimate the fragility functions, 

while the Bayesian approach considers the entire prior IM distribution. The posterior distribution, obtained from 

the Bayesian approach, has reduced uncertainty and the median values are closer to the “true” values.  

 

Figure 7. Comparison of the prior and posterior distributions of SA(0.3s) at the three survey sites indicated in 

Figure 2, with the simulated “true” values at these sites. The prior distribution is conditioned on the rupture 

information and the station data, while the posterior distribution additionally considers the damage survey 

data through the proposed Bayesian approach. 

We note that the presented case study results are obtained for a simulated damage data set. To establish the 

prior IM distribution, we used the same ground motion and spatial correlation models as the ones used to 

generate the data. In Bodenmann et al. (2023), the authors compare the methodologies using actual damage 

data and test their robustness with respect to the employed ground motion and spatial correlation models. 

5 Conclusions 

This study explored the chicken-and-egg problem in estimating fragility function parameters from post-

earthquake damage survey data. This causality dilemma is due to the uncertainty in the IM values the surveyed 

buildings were subjected to. We compared two parameter estimation approaches that tackle this issue 

differently: the first, traditional, approach uses fixed, best-estimate, IM values for parameter estimation, while 

the second, recently proposed, approach considers IM values and fragility function parameters as uncertain 

variables and uses Bayesian inference to estimate their joint posterior distribution.  

Both approaches were applied to a simulated damage survey data set of 12’000 buildings. We assessed their 

performance in recovering the “true” data-generating fragility functions. The fragility functions estimated with 

the fixed IM approach are flatter than the “true” functions. In other words, the fixed IM approach overestimates 

damage probabilities for low IM values and underestimates probabilities for large IM values. By considering 

fixed, best-estimate, IM values, this approach does not account for the variability of the actual, unobserved, 

IM around these best-estimates. This causes an overestimation of the fragility function dispersion and results 

in flatter fragility functions.  

The proposed Bayesian approach, on the other hand, explicitly accounts for IM uncertainty, and performs 

simultaneous inference on the IM values and the fragility function parameters. This procedure avoids an 

inflation of fragility function dispersion, as observed with the fixed IM approach, and the estimated fragility 

functions better match the “true” ones used to generate the data. This extra value makes the increased 

computational cost of the Bayesian approach a good investment for empirical fragility studies.   

While the focus of the presented work lies on IM uncertainty, there are several opportunities for further research 

addressing additional challenges in empirical fragility modelling. The Bayesian approach could be adapted to 

fragility models that depend on building characteristics in a more complex manner than the commonly used 
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categorization into pre-defined building classes. It could also be extended to account for uncertainty in the 

collected building characteristics (or the deduced building classes). Despite these possible extensions of the 

presented Bayesian approach, its current capability to account for IM uncertainty makes it a valuable tool for 

analysts interested in improved empirical fragility modeling. 

6 Code availability 

The presented results were obtained with BayesFrag, an open-source, Python-based, software tool developed 

by the authors. BayesFrag is available at https://doi.org/10.5281/zenodo.10074233 and comes with several 

tutorials that assist analysts interested in applying the Bayesian parameter estimation approach to their data 

sets.  
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